Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination.

نویسندگان

  • B M Davis
  • J D Istok
  • L Semprini
چکیده

Naturally occurring radon in groundwater can be used as an in situ partitioning tracer for locating and quantifying non-aqueous phase liquid (NAPL) contamination in the subsurface. When combined with the single-well, push-pull test, this methodology has the potential to provide a low-cost alternative to inter-well partitioning tracer tests. During a push-pull test, a known volume of test solution (radon-free water containing a conservative tracer) is first injected ("pushed") into a well; flow is then reversed and the test solution/groundwater mixture is extracted ("pulled") from the same well. In the presence of NAPL radon transport is retarded relative to the conservative tracer. Assuming linear equilibrium partitioning, retardation factors for radon can be used to estimate NAPL saturations. The utility of this methodology was evaluated in laboratory and field settings. Laboratory push-pull tests were conducted in both non-contaminated and trichloroethene NAPL (TCE)-contaminated sediment. The methodology was then applied in wells located in non-contaminated and light non-aqueous phase liquid (LNAPL)-contaminated portions of an aquifer at a former petroleum refinery. The method of temporal moments and an approximate analytical solution to the governing transport equations were used to interpret breakthrough curves and estimate radon retardation factors; estimated retardation factors were then used to calculate TCE saturations. Numerical simulations were used to further investigate the behavior of the breakthrough curves. The laboratory and field push-pull tests demonstrated that radon retardation does occur in the presence of TCE and LNAPL and that radon retardation can be used to calculate TCE saturations. Laboratory injection-phase test results in TCE-contaminated sediment yielded radon retardation factors ranging from 1.1 to 1.5, resulting in calculated TCE saturations ranging from 0.2 to 0.9%. Laboratory extraction-phase test results in the same sediment yielded a radon retardation factor of 5.0, with a calculated TCE saturation of 6.5%. Numerical simulation breakthrough curves provided reasonably good matches to the approximate analytical solution breakthrough curves. However, non-equilibrium radon partitioning and heterogeneous TCE distributions may affect the retardation factors and TCE saturation estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical simulations of radon as an in situ partitioning tracer for quantifying NAPL contamination using push-pull tests.

Presented here is a reanalysis of results previously presented by [Davis, B.M., Istok, J.D., Semprini, L., 2002. Push-pull partitioning tracer tests using radon-222 to quantify non-aqueous phase liquid contamination. J. Contam. Hydrol. 58, 129-146] of push-pull tests using radon as a naturally occurring partitioning tracer for evaluating NAPL contamination. In a push-pull test where radon-free ...

متن کامل

Static and push-pull methods using radon-222 to characterize dense nonaqueous phase liquid saturations.

Naturally occurring radon in ground water can potentially be used as an in situ partitioning tracer to characterize dense nonaqueous phase liquid (DNAPL) saturations. The static method involves comparing radon concentrations in water samples from DNAPL-contaminated and noncontaminated portions of an aquifer, while the push-pull method involves the injection (push) and extraction (pull) of a rad...

متن کامل

470-481 Gw J-a 03

The release of nonaqueous phase liquids (NAPLs) to the subsurface environment can create long-term sources of ground water contamination as the NAPL slowly dissolves into ground water (Mercer and Cohen 1990; Cohen and Mercer 1993). Effective remediation of subsurface NAPL contamination requires that NAPL be accurately located and saturations quantified. This is particularly important for dense ...

متن کامل

Single-well "push-pull" partitioning tracer test for NAPL detection in the subsurface.

Previous environmental applications of partitioning tracer tests to detect and quantify nonaqueous phase liquid (NAPL) contamination in the subsurface have been limited to well-to-well tests. However, theory and numerical modeling suggests that single-well injection-extraction ("push-pull") partitioning tracer tests can also potentially detect and quantify NAPL contamination. In this type of te...

متن کامل

In situ quantification of methane oxidation in soils using Gas Push–Pull Tests

The Gas Push–Pull Test (GPPT) is a tool for measuring in situ soil processes including methane oxidation. To quantify methane oxidation, methane and non-reactive gases selected based on transport behaviour similar to methane, were injected into soil above a petroleum hydrocarbon contaminated aquifer and gas samples were extracted over time. The rate of loss of methane was compared to the loss o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of contaminant hydrology

دوره 58 1-2  شماره 

صفحات  -

تاریخ انتشار 2002